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DIFFUSION IN BINARY PLASMA MIXTURES*

D. B. Boercker, A. J. Ladd, E. L. Pollock
University of California, Lawrence Livermore National Laboratory

Livermore, California 94550

This report considers ion diffusion in binary plasma mixtures. After
first defining the diffusion coefficient for a binary mixture in Section I
we show how it is related to concentration fluctuations in Section II. The
relation between diffusion and.self diffusion is discussed in Section III.
Specializing to a model of classical ions in a uniform, charge neutralizing,
background we discuss molecular dynamics simulations (Section IV) and kinetic
theory calculations (Section V). Results for H*-He** mixtures at a
temperature of 5 eV and S1'+]4-Sr+36 mixtures at 1 keV, all at 1022

ions/cma, are presented and discussed in Section VI.



I. Defining Relations

We define the diffusion constant (also called the interdiffusion constant)

as linearly relating mass fluxes to mass concentration gradients. Specifically

for a type 1 particle let

35(rt) =m0 (r, ) 0 (r,t)¥(r, ) (1.1)

where n,(r,t) is the number density for type i particles, Vy(r,t) its
velocity field and V(r.t) the center of mass velocity defined by

V(r,t) = i§1 mini(r,t)'\'ri(r,t)/i)i] myny (rst). (1.2)
This last relation implies that j](rt) + jz(rt) = 0. Introducing mass
densities, pi(r,t) = mini(r,t). and mass ‘concentrations, xi(r,t) =
pi(r.t)/p(r.t), where p(r,t) = gpi(r.t) the diffusion constant, D, is
formally defined by '

ji(r,t) = -pDVXi(r,t) 1=1,2 (1.3)

(In this equation and in what follows we often denote average quantities, such
as p, by suppressing the space and time dependence.) Had we started with a
two-by-two matrix of diffusion constants the relations ji(rt) = -jz(rt) and
Vx](r,t) = -sz(r,t) immediately reduce things back to Eq. (1.3). There is
only one diffusion constant in a binary mixture. The self diffusion constant,

which we define in Section III, is a microscopic concept and does not appear

in a hydrodynamic or macroscopic description.



II. Green-Kubo Relation For The Diffusion Constant

The diffusion constant, like other transport constants, can be expressed
in terms of fluctuations in the system in equilibrium; without any external
forces to drivé a particulér mass or energy flux. Derivations of this are
available in the literature [1,2] but for completeness we include a simplified
derivation which gives the correct result. We consider low frequency, long
wavelength fluctuations which is the regime governed by linear hydrodynamics.
Since we are only interested in diffusion, we consider only mass concentration
fluctuations and can ignore temperature and pressure fluctuations. Thus only
number, and not momentum or energy conservation, must be considered. (For the
full treatment see the references.)

The conservation law for, say, species one

ap] -
if—('t) +V . p](rt)v] (rt) =0 (2.1)
may be rewritten using the definitions of Section I and overall number

conservation as

axXy(rt) - .
p(rst) (—gg—+ V(rt) = ¥X(rt)) = v - Jy(rt) (2.2)

Linearizing this eqdation and introducing the diffusion constant gives the

diffusion equation for mass fluctuations

32 8K (r,t) = 0V 8K, (ryt) (2.3)

where sxl(r,t) = x](r,t) - x]. The free space solution of this

equation, in terms of Fourfer components 1s
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8, (kst) = 86Xy (k,0)e Kt (2.4)

If the initial fluctuation, sxi(k,t=o), is assumed to be an equilib-

rium fluctuation and we average over these initial fluctuations then

| | ,
<8%,(-k,t)8K, (K, t=0)> = <18, (k,t=0)15> e k't (2.5)
or
<8y (k)8 (k,t0)> = S et cox (- taon (kte0pdt )
2, urtDk?

= <|6x](k,t=o)| > 4
w-+D%k
where the bracket < > denotes an equilibrium ensemble average. Taking the

appropriate limits in this last equation we obtain a relation for D

2 )
. . jwt
D<I18X1(0,£) 15 = Tim 1im & R J et <6X,(-k,t)8X, (k,t=0)> dt .

Integrating by parts this becomes

) |
D<16X1(0,£=0)1% = 1im 1tm —} Re S @' <ak,(-k,t)sk, (k,0)> dt .
w*0 k+0 k (1]

To simplify this expression the mass fluctuation is rewritten in terms of mass

densities as

p](rt) xzsp](rt) - xlcpz(ﬂ) + 0(8p ) 2 . (2.9)

Lrt) sty =% ¢ 5

Using the microscopic definitions for the mass densities, e.g.,



fker(t
oy (kst) = jZl m e ry(t)

Eq. 2.8 becomes

D=—; L __ J'<'§ (t) » j(o)>dt (2.10)
3p%<18X, (0, t=0)1%

where (t) =X m v, (t) - X m.'\7 t) .
D 2 121 14 1 1£2 2"

Using <§D(0)-3D(0)> = 3kTMx]x2 » which follows from the Maxwell-Boltzmann

velocity distribution, where M is the total mass of the system and introducing

Scc(k). discussed below, by

| zhz
ol <|6x,(o,t=0)|2> -Tl-z- <(k=0)

Eq. 2.10 reduces to

( C C,C " <3 (t)'J (0)>
1 2 12 D
"k m * Y S ("'O’ <JD; t e

where the C's are number concentrations. It is possible to factor the masses

from this expression to obtain the form

¢,C .
D= cz" E—-—%-éayq I <Vp(t)evglo)> dt . (2.12)
with Vp(t) = ¢, 12] Vi(t) - ¢ 122 Ve .

The quantity Scc (k) is referred.to as the concentration structure factor

equivalently defined as the transform of
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9cc'(r) = cfcz [9'”(") + gzz(r) -2 912(")] .

It also follows from thermodynamic-arguments.-starting from our definition in

terms of fluctuations, that

2%
Sec (k=0) = "kT/';E;Z
where G is the Gibbs free energy. In the small concentration limit'(c1+0 or 1)
Scc(k=°) + c]cz. This is true at all concentrations in the case of an
jsotopic mixture, where clasgically oniy the ideal gas terms in-the free energy
depend on the concentration. In general, specifically for the model we treat
below, this is not true but the usually small deviations can be evaluated
theoretically or by simulation. The presence of the C]CZ/Scc(k=0) factor
stems from our definition of D in terms of the mass concentration gradient
rather than the gradient of the chemical potential as is sometimes done.
Finally, it should be stressed that the various limits of long wavelength
and lTow frequency fluctuations that have been invoked to obtain Egs. (2.11) or
(2.12) may be thought of as merely describing the particular experiments we
use to obtain D. Once we have evaluated Eq. (2.12) either by simulation or '

kinetic theory the diffusion constant can be employed wherever the user dares.

III. Relation Between Diffusion and Self-Diffusion

Although it does not apbear in the hydrodynamic description of a binary
mixture, the process of self-diffusion is easily understood physically and

refers to somehow marking (perhaps by isotopic substitution) one particle in
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the mixture and observing how 1t drifts from its initial position. If this is

repeated over numerous observations either with the same or a similar particle,

the self-diffusion constant is defingd from
<«(#,(1)-# (0% » 6D, . | | (3.1)

for large t where the subscript 1 refers here to a type 1 paéticle. This can

be rewritten in terms of the velocity autocorrelation function as

0, = % d -9 0>t | (3.2)

- ]

The current correlation for the diffusion constant 1s

L2 . & -
<Vp(t) ¢ v (0)> = C b <V (t) « v, (0)>
D D 2 1c1 jE] i J( |

+ cf R AR 31(0)>
12 jec2

-2¢,C T <Vl () o Va(0)>
172 151 Je2 i ) J(

Neglecting velocity correlations between different particles gives, using Eqs.

(2.12) and (3.2), an approximate relation between the diffusion and self-

diffusion constants,

"

£< - : : '
1, D= 02 01 + Gy 02 . (3.4)

(2]

This relation 1s exact in the lou.concentraf1on 1imit. Further, 1f the
diffusion current correlation of Eq. (3.3) 1s expanded in powers of t2 it is

seen that the cross correlations, which cause.deviations from this relation,

first enter at order t‘.



In the simulations we concentrate on 50X mixtures where the deviations in
this fe1at1on are likely to be largest. There 1s already some evidence in the
1iterature on the reliability of the approximation, Eq. (3.4). In simulationé
on mixtures of rare gas 1iquids no deviation from this relation was observed
to within the probably 5-10% accuracy of the s1mu1at1ons [3]. In a simulation
of a model mojten silt. where the anion and cation had equal mass and opposite
charge so the diffusion and electric current are proportional, the relation
3.4 over-estimated the diffusion constant (and the conductivity) by about 20%
due to the tendency of + and - pairs to diffuse together which produces no net
current [4]. To get ahead of the story, in the present simulations we find
that the approximation for D based on 01 and D2 gives an estimate within
the uncertainty in our computed ést1mate for D for the S1*14-sr*36 pixtures
and slightily below the computed D for the H*'.'-I-le"'2 mixture. Since

self-diffusion constants are generally much easier to compute than diffusion

constants this is a useful empirical rule.

'IV. Some Remarks On The Simulations '

The self and interdiffusion constants have been evaluated by molecular
dynamics for a model of classical point fons in a uniform, charge neutralizing
background. These techniques are by now routine, but questions were raised
about the ensemble dependence of the computed time correlation function.The
molecular dynamics simulations used a system at constant energy, particle
number, volume, and total momentum. An ensemble-of such systems s called a
microcanonical ensemble. On the other hand the theoretical results have
assumed a canonical or grand canonical ensemble. The differences between
averages calculated in these ensembles and by molecular dynamics is due to the

presence or absence of energy and momentum fluctuations. For example the



average square of the total momentum is zero in the molecular dynamics simu-
lations but equal to 3 kTM for a canonical ensemble. Similarly the energy
fluctuations, which are zero in a molecular dynamics simulation, are propor-
tional to the specific heat in a canonical ensemble.

We are interested in the ensemble dependence of <JD(t)- JD(0)>. The key
point is that the average diffusion current, JD, is zero in the molecular
dynamics experiment. This is still true even if the total momentum were non-
zero since adding a drift velocity to all the velocities doesn't affect Jp-
We also need a standard result in statistical mechanics that the ensemble

dependence in the correlations of any two dynamjcal variables A and B is given
by [5]

a<A>,'4D) a<B>"D)

<8ASB> ., = <SASB>y, + <(E-E)2>ce (—-5g-‘ (4.1)

3<A> B>
)

+ <P%ce _P_ MD) +0 (-N-)

where < >ce denotes the canonical ensemble average. Applying this with A =
JD(t). B = JD(O) we see that the ensemble dependgﬁt corrections vanish since

<JD>MD is zero for all E and P. Therefore, the molecular dynamics correlation

function can be used directly in the equations of Section II.

V. Kinetic Theory

The basic theoretical approach followed here is to express the time
correlation function for the diffusion current in terms of the solution to a

kinetic equation. The diffusion constant can then be expressed in terms of
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the hydrodynamic matrix elements of the “memory"” function appearing in the

kinetic equation. More explicitly we write

and C(t) is the diffusion current correlation function. Using the isotropy of

the system one can write

c (z) = oz Z VoYe sd3padp! S (k=0,z;pp* )PP, " (5.1)
with
C -C
Y] = 2 ’ 'Y ] .
m]/n . mZ/n

The functions gaT(k.z;pp') are the_solutions to a kinetic equation of the form,

Y

“ +*> . “
(z - ﬁiz) Sgcl(kzspp') + E%E-no¢a(p) 2.3;0.(k) J Sgeqlkz;Pp')dp

N n . '
- Z Jdp M i (kz;pp) Syu(kz;ipp') (5.2)

‘b .
= 1 n9,(p) (6016(p-p') +n9.(p*) h (k) .

In the above ¢°(p) is the normalized Maxwell-Boltzmann distribution for




n
species o, 'ﬁa_t(k) is the Fourier transform of gm(r) -1, ?.’m(k) the direct
correlation functon, and the ﬁm's are the "memory functions®.
In order to solve this kineti; equation we will make two major approxi-

mations. The first concerns the exlicit form of the memory function and the

second concerns the method of solution. We use what is called the disconnected
approximation for 'Mﬂ [6] and our solution method is equivalent to a single

sonine polynomial approximation [7]. '

Making these approximations we find [8]

2
c.C 1/2 m,+m 1/2 aw
172 L ( 172
D= —= (=) —2——2-&572— (5.3)
Sec®=0) &' 72 1% 2,%2.%r /%,
171 "2 "2°2 ™ 12 %0
where
2 2.
Z\“n 2,n
4 3 _ 1 2 2.1 1 2 2y
a =—= = 4me + »
3 n "’p ‘m] mz'

I‘o = ezlakT and A is a generalization of the Coulomb logarithm given by

o7 (kT(m]ﬂ'nz))]/2 1 ;f 2 Y (k) ?dm [S4(kw)S,,(kw)
N dkk® ¢, (k o “
———“z]zze —zﬁ—] m, 21m] N, o 1287 1 22

(5.4)
- 5122 (k'm)]
To complete the calculation, we need an estimate of the dynamic structure
factors in Eq. (5.4). These are approximated from the solutions to Eq. (5.2)

with 'Mm = 0.
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A very similar method can be employed to obtain the self diffusion
constants in a binary ionic mixture. These are presented along with the

diffusion constants in Table I.

VI. Summarx Of Results

Simulations and kinetic theory calculations have been carried out for a -
50% H'-He™" mixture at a temperafure of ~» 5 eV and for several Sr+36-Si+]4
mixtures at T =1 keV. Results for diffusion and self—diffdsion constants are
given in Table I. The uncertainties in the molecular dynamics self diffusion
constants, about 1%, are considerable less than the uncertainties in the
diffusion constants, about 10%, since all particles of the same species may be
averaged over. Several things are noteworthy in the table. First, as
remarked earlier, the estimate of the diffusion constant based on the self
diffusion constants is within the statistical uncertainty for the 50% Si-Sr
mixture. Both the kinetic theory calculations and the simulations show little
variation in D as the concentration is changed. The self diffusion constants,
however, do decrease as more Sr is addéd and the plasma becomes more strongly
coupled. As this occurs the interdiffusion 1s increasingly dominated by the
more moﬁile Si ion with the result that the interdiffusion constant shows much
less variation than the self diffusion constants. This should be generally

true for other plasma mixtures. Finally, we remark that the time scale in the

Si-Sr mixtures for diffusional spreading of ~100 A is roughly 2 picoseconds

at these temperatures.

EP:mpd:0257M
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Table

I: Self and interdiffusion constants in binary plasma mixtures.

MD KT
r—# -
NS N
% Si [Dc 36 | De#14 |36 D | CeDestCesDe. |IDc +36 | De.+14 e Des+ CeyD Scc zzﬁa'
Sr 51 T, sr0si*Csilsr ||Dsy Si T.C, CspDsi* Csi0sp T.C,
0.1 .185 .185 .185
25.0| .088 .259 | .215(17) .217 .0775 .215 .186 .181 .923 911
50.0 .105(1)] .325(3)|.217(10) .215 .0904 .263 .182 177 .860 .838
75.0] .128(2)| .a08(4)| .204(15) 197 113 .349 177 172 .841 .807
99.9 .168 .168 .168
; S S 2 —
+ Sce . cc cc
% H D D,* A D DAC, DHe. Dyt D+ A D | CueDi*Cilhe T,C, 1 /1
508 | .0488 122 | .0946(5) .0854 -.0418 .109 .082 .075 .914 .900

The two halves of the table (separated by the double line) give the results of molecular dynamics simulations
(MD) and kinetic theory calculations (KT). For all cases n = 1022 1ons/cm3. T =1 keV for the

sit14_g,*36

mixtures and ~ 5 eV for the H+-He++.mixture. The first column 1s number concentration (C).

The D's labeled with a species subscript are for self-diffusion. Al1 diffusion constants are in cmZ/sec. The

numbers in parenthesis give the estimated uncertainties in the least significant figure.

Debye-Hiicke1l theory estimate for Scc(k'o)/CICZ'

The last column is the



